寮步激光焊接加工激光焊接技術(shù)有哪些保護(hù)氣體?激光焊接過程常使用惰性氣體來保護(hù)熔池,當(dāng)某些材料焊接可不計(jì)較表面氧化時(shí)則也可不考慮保護(hù),但對大多數(shù)應(yīng)用場合則常使用氦、氬、氮等氣體作保護(hù),使工件在焊接過程中免受氧化。
氦氣不易電離(電離能量較高),可讓激光順利通過,光束能量不受阻礙地直達(dá)工件表面。這是激光焊接時(shí)使用最有效的保護(hù)氣體,但價(jià)格比較貴。
氬氣比較便宜,密度較大,所以保護(hù)效果較好。但它易受高溫金屬等離子體電離,結(jié)果屏蔽了部分光束射向工件,減少了焊接的有效激光功率,也損害焊接速度與熔深。使用氬氣保護(hù)的焊件表面要比使用氦氣保護(hù)時(shí)來得光滑。
氮?dú)庾鳛楸Wo(hù)氣體最便宜,但對某些類型不銹鋼焊接時(shí)并不適用,主要是由于冶金學(xué)方面問題,如吸收,有時(shí)會(huì)在搭接區(qū)產(chǎn)生氣孔。
使用保護(hù)氣體的第二個(gè)作用是保護(hù)聚焦透鏡免受金屬蒸氣污染和液體熔滴的濺射。特別在高功率激光焊接時(shí),由于其噴出物變得非常有力,此時(shí)保護(hù)透鏡則更為必要。
保護(hù)氣體的第三個(gè)作用是對驅(qū)散高功率激光焊接產(chǎn)生的等離子屏蔽很有效。金屬蒸氣吸收激光束電離成等離子云,金屬蒸氣周圍的保護(hù)氣體也會(huì)因受熱而電離。
如果等離子體存在過多,激光束在某種程度上被等離子體消耗。等離子體作為第二種能量存在于工作表面,使得熔深變淺、焊接熔池表面變寬。
通過增加電子與離子和中性原子三體碰撞來增加電子的復(fù)合速率,以降低等離子體中的電子密度。中性原子越輕,碰撞頻率越高,復(fù)合速率越高;另一方面,只有電離能高的保護(hù)氣體,才不致因氣體本身的電離而增加電子密度。
表 常用氣體和金屬的原子(分子)量和電離能
材料 氦 氬 氮 鋁 鎂 鐵
原子(分子)量 4 40 28 27 24 56
電離能(eV) 24.46 15.68 14.5 5.96 7.61 7.83
從表可知,等離子體云尺寸與采用的保護(hù)氣體不同而變化,氦氣最小,氮?dú)獯沃褂脷鍤鈺r(shí)最大。等離子體尺寸越大,熔深則越淺。造成這種差別的原因首先由于氣體分子的電離程度不同,另外也由于保護(hù)氣體不同密度引起金屬蒸氣擴(kuò)散差別。
氦氣電離最小,密度最小,它能很快地驅(qū)除從金屬熔池產(chǎn)生的上升的金屬蒸氣。所以用氦作保護(hù)氣體,可最大程度地抑制等離子體,從而增加熔深,提高焊接速度;由于質(zhì)輕而能逸出,不易造成氣孔。當(dāng)然,從我們實(shí)際焊接的效果看,用氬氣保護(hù)的效果還不錯(cuò)。
等離子云對熔深的影響在低焊接速度區(qū)最為明顯。當(dāng)焊接速度提高時(shí),它的影響就會(huì)減弱。
保護(hù)氣體是通過噴嘴口以一定的壓力射出到達(dá)工件表面的,噴嘴的流體力學(xué)形狀和出口的直徑大小十分重要。它必須以足夠大以驅(qū)使噴出的保護(hù)氣體覆蓋焊接表面,但為了有效保護(hù)透鏡,阻止金屬蒸氣污染或金屬飛濺損傷透鏡,噴口大小也要加以限制。流量也要加以控制,否則保護(hù)氣的層流變成紊流,大氣卷入熔池,最終形成氣孔。
為了提高保護(hù)效果,還可用附加的側(cè)向吹氣的方式,即通過一較小直徑的噴管將保護(hù)氣體以一定的角度直接射入深熔焊接的小孔。保護(hù)氣體不僅抑制了工件表面的等離子體云,而且對孔內(nèi)的等離子體及小孔的形成施加影響,熔深進(jìn)一步增大,獲得深寬比較為理想的焊縫。但是,此種方法要求精確控制氣流量大小、方向,否則容易產(chǎn)生紊流而破壞熔池,導(dǎo)致焊接過程難以穩(wěn)定。